calendrier des rencontres - определение. Что такое calendrier des rencontres
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое calendrier des rencontres - определение

Probleme des rencontres; Problème des rencontres; Rencontres number; Rencontres Numbers; Partial derangement

Rencontres numbers         
In combinatorial mathematics, the rencontres numbers are a triangular array of integers that enumerate permutations of the set { 1, ..., n } with specified numbers of fixed points: in other words, partial derangements.
Montreal International Documentary Festival         
The Montreal International Documentary Festival () is a Canadian documentary film festival, staged annually in Montreal, Quebec."Feminine sense of RIDM; Festival lineup showcases the strength of documentaries directed by women".
Des gaffes et des dégâts         
Des gaffes et des dégâts, written and drawn by Franquin, is the sixth album of the original Gaston Lagaffe series. The 59 strips of this album were previously published in Spirou magazine.

Википедия

Rencontres numbers

In combinatorial mathematics, the rencontres numbers are a triangular array of integers that enumerate permutations of the set { 1, ..., n } with specified numbers of fixed points: in other words, partial derangements. (Rencontre is French for encounter. By some accounts, the problem is named after a solitaire game.) For n ≥ 0 and 0 ≤ k ≤ n, the rencontres number Dnk is the number of permutations of { 1, ..., n } that have exactly k fixed points.

For example, if seven presents are given to seven different people, but only two are destined to get the right present, there are D7, 2 = 924 ways this could happen. Another often cited example is that of a dance school with 7 couples, where, after tea-break the participants are told to randomly find a partner to continue, then once more there are D7, 2 = 924 possibilities that 2 previous couples meet again by chance.